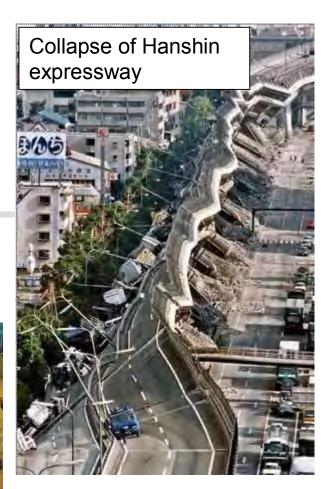
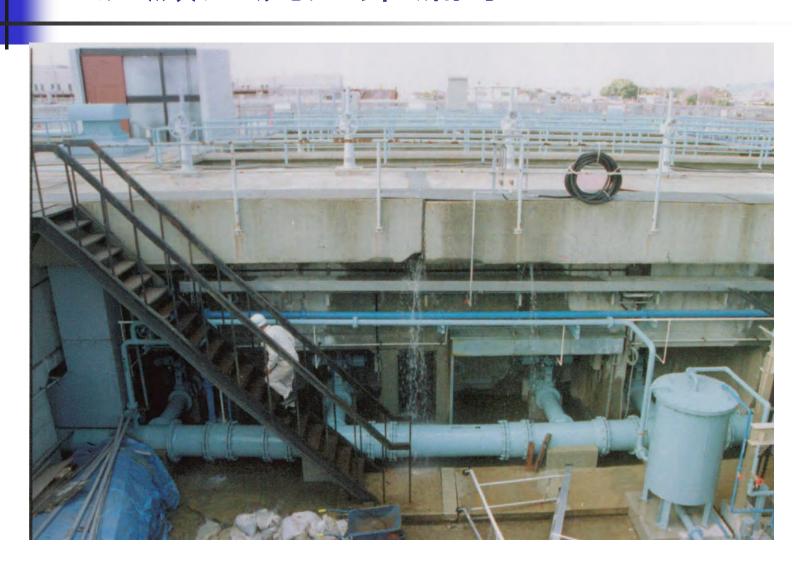

### 阪神水道企業団施設概要図




## 阪神淡路大震災




Mw 6.8 (Shindo 7)





# 猪名川浄水場 沈澱池流入渠漏水



## 猪名川浄水場 沈澱池基礎杭損傷



## 甲山浄水場 法面崩壊



# 甲山浄水場 基礎の露出



## 尼崎浄水場 逆洗水槽支持柱損傷



# 甲東ポンプ場 ポンプ室小柱損傷





#### 構造物の被害の特徴

経年化施設に被害が多い(猪名川浄水場)

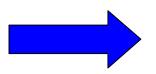
地盤と関連:埋土地盤の液状化(猪名川浄水場)

:盛土地盤の崩落(甲山浄水場)

構造形式:上部荷重の影響

高架水槽支持柱(尼崎浄水場)

ポンプ室小柱(甲東ポンプ場)

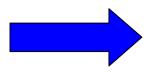







### 新尼崎浄水場の耐震化対策 1

- 1. 主要構造物の地震動レベル2対応
- 2. 構造物及び主要配管の液状化対策
- 3. 耐震用止水板の採用
- 4. 可とう管の設置
- 5. 薬品注入配管の耐震化




ハード面での対応



#### 新尼崎浄水場の耐震化対策 2

- 6. 浄水系統の2系統化
- 7. 電気計装設備のバックアップシステム
- 8. エネルギー源の分散化(コージェネレーション)
- 9. 消毒剤の変更(液体塩素→次亜塩素酸ナトリ ウム)
- 10. 浄水池容量の増加



ソフト面での対応



### 水道施設耐震設計指針 解説

平成9年3月改訂

阪神•淡路大震災

耐震レベルを2段階



#### 耐震計算法と対象構造物

- •震度法
- •応答変位法
- ・動的解析による照査



地上構造物 一 震度法

地中構造物 一 震度法

一 応答変位法



#### 構造物の耐震レベル

#### L2対応構造物(限界状態設計法)

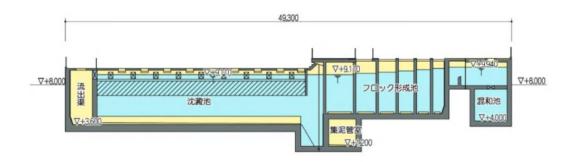
地上構造物

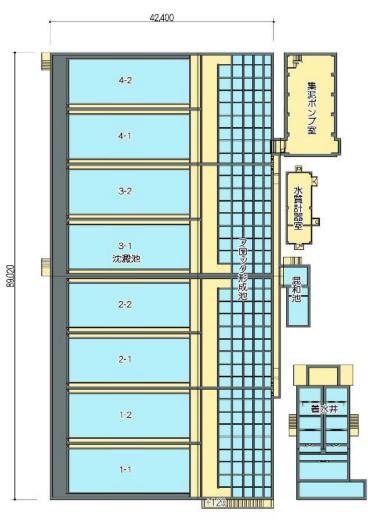
一沈澱池

震度法

地中構造物

一 浄水池





震度法

その他の構造物は、地震動L1で構造計算(許容応力度法)を行い、L2での照査の結果を反映して、せん断補強筋の追加を行った。



## 沈澱池







## 地上構造物における 設計水平震度(L2)

 $K_{h2}=C_S\times K_{h02}$ 

K<sub>h2</sub>:設計水平震度

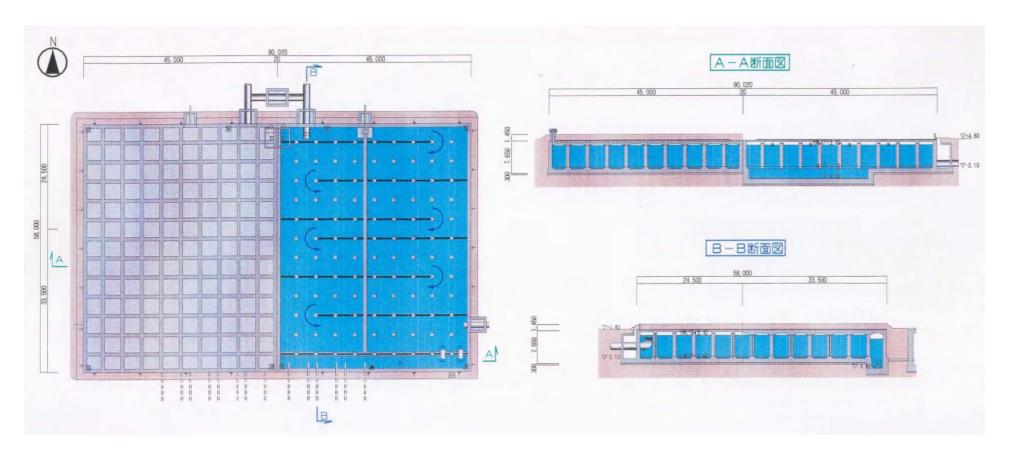
Cs: 構造物特性係数(0.45)

K<sub>h02</sub>: 構造物の重心位置における基準水平震度

| 地盤種別                 | 構造物の固有周期T(sec)に対するK <sub>h02</sub> の値 |                       |                              |
|----------------------|---------------------------------------|-----------------------|------------------------------|
| I 種地盤                | T<0.2                                 | 0.2≦T≦1.0             | 1.0 <t< th=""></t<>          |
| $T_G < 0.2$          | $K_{h02}$ =2.291 $T^{0.515}$          |                       |                              |
|                      | ただしK <sub>h02</sub> ≧0.70             | $K_{h02}=1.0$         | $K_{h02} = 1.000 T^{-1.465}$ |
| Ⅱ種地盤                 | T<0.2                                 | 0.2≦T≦1.0             | 1.0 <t< th=""></t<>          |
| $0.2 \le T_G < 0.6$  | $K_{h02} = 5.130 T^{0.807}$           |                       |                              |
|                      | ただしK <sub>h02</sub> ≧0.80             | K <sub>h02</sub> =1.4 | $K_{h02} = 1.400T^{-1.402}$  |
| Ⅲ種地盤                 | T<0.3                                 | 0.3≦T≦1.5             | 1.5 <b>&lt;</b> T            |
| 0.6≦T <sub>G</sub> 6 | $K_{h02}$ =2.565 $T^{0.631}$          |                       |                              |
|                      | ただしK <sub>h02</sub> ≧0.60             | K <sub>h02</sub> =1.2 | $K_{h02} = 2.003 T^{-1.263}$ |

T<sub>G</sub>: 地盤の固有周期

T:構造物の固有周期


0.6164 (sec)

0.561 (sec)

 $\rightarrow$  Kh<sub>2</sub>=0.54



## 浄水池

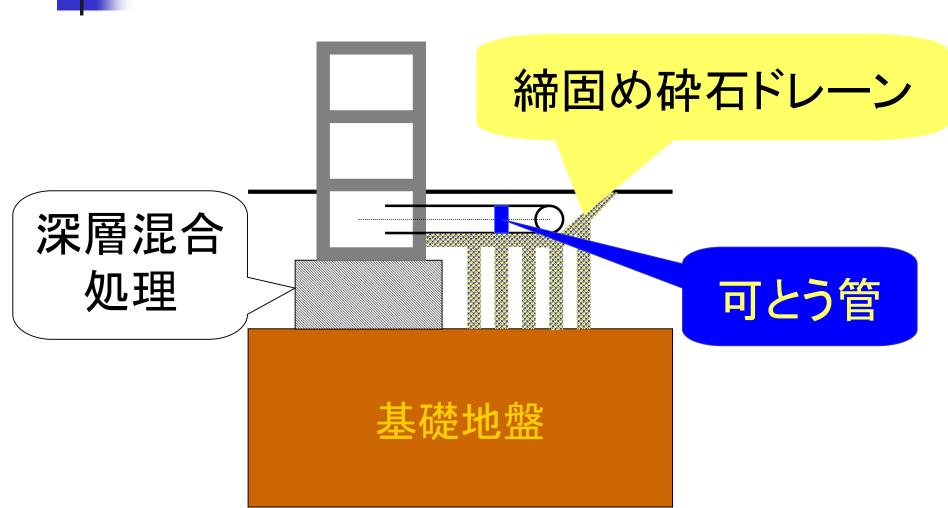




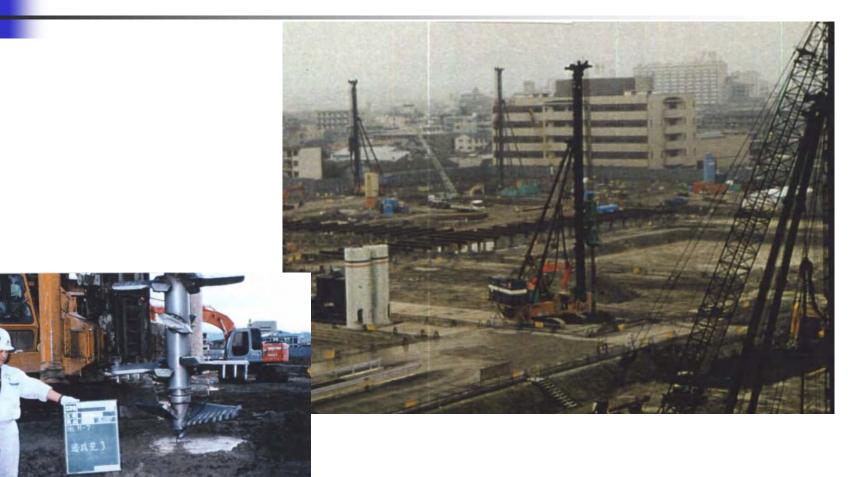
## 地中構造物における 設計水平震度(L2)

K<sub>h2</sub>: 構造物の重心位置における設計水平震度 (地表面と基盤面の設計水平震度の補間)

| 地盤種別                 | 地表面における<br>設計水平震度<br>(K <sub>h2</sub> )の下限値<br>~上限値 | 基盤面における<br>設計水平震度<br>(K'h2)の下限値<br>~上限値 |
|----------------------|-----------------------------------------------------|-----------------------------------------|
| I 種地盤                |                                                     |                                         |
| $T_G$ < 0.2          | $K_{h2} = 0.60 \sim 0.70$                           |                                         |
| Ⅱ種地盤                 |                                                     |                                         |
| $0.2 \le T_G < 0.6$  | $K_{h2} = 0.70 \sim 0.80$                           | $K'_{h2} = 0.40 \sim 0.50$              |
| Ⅲ種地盤                 |                                                     |                                         |
| 0.6≦T <sub>G</sub> 6 | $K_{h2} = 0.40 \sim 0.60$                           |                                         |


T<sub>G</sub>: 地盤の固有周期

0.6164 (sec)


 $\rightarrow$  Kh<sub>2</sub>=0.58



#### 液状化対策

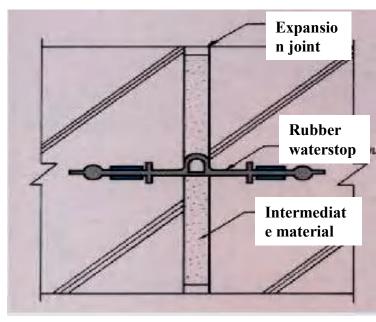


# 深層混合処理



# 締固め砕石ドレーン

drain pipe






Crushed stone

# 耐震用止水板





| Specific gravity    | 1.14      |
|---------------------|-----------|
| Hardness            | 62        |
| Tensile strength    | 24.5Mpa   |
| Breaking elongation | 510%      |
| Breaking strength   | 137.3N/mm |

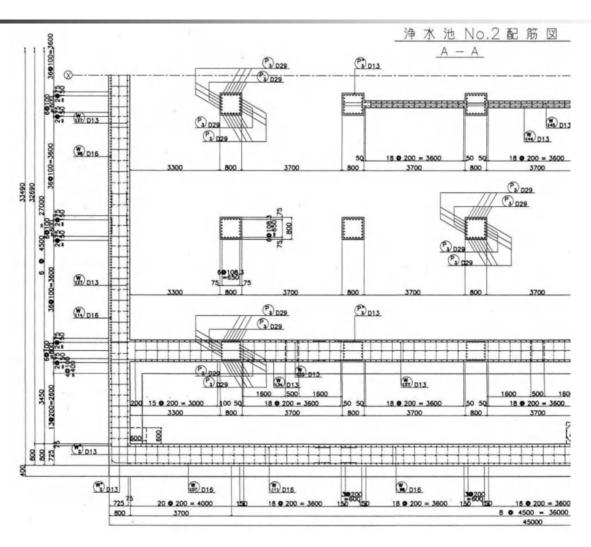
# 伸縮可とう管(1,600A)



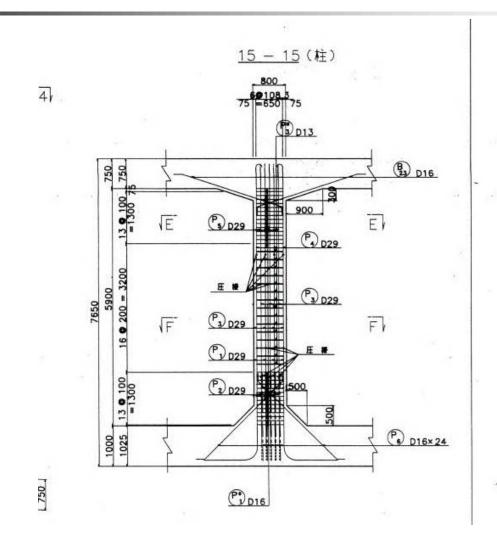


#### 耐震化に要した費用

| 項目         | 費用(億円)    |
|------------|-----------|
| ① ハード面での対応 | 18        |
| 構造物        | 16        |
| 躯体         | <i>15</i> |
| 基礎         | 1         |
| 場内配管       | 2         |
| ② ソフト面での対応 | 2         |
| 浄水池容量の増加   | 2         |
| 合計         | 20        |


- ・全体工事費(I期)320億に対して約20億が耐震化に要した費用 (約6%)
- ・浄水場全体でコンクリート1m3当たりの鉄筋量が約34%増大




#### 耐震設計上の課題

- ●耐震化による費用増
- ●現場での施工性を考慮した設計 (鉄筋かぶり、コンクリートの流動性等)

### 浄水池柱配筋図(平面図)



## 浄水池柱配筋図(断面図)



# 浄水池柱配筋状況



